Studi Literatur: Potensi Limbah Kulit Singkong Karet (Manihot glaziovii) sebagai Elektroda Superkapasitor pada Lampu Portabel
Abstrak
Conventional electricity is one of the basic needs that increases every year. The limited sources of conventional electricity lead us to find the sources of electricity that are safe and environmentally friendly. There are 433 villages in underdeveloped, frontier, and outermost areas in 2020 that lack of electricity. Alternative solution for this problem is by innovating ceara rubber (Manihot glaziovii) as a supercapacitor electrode in portable lamps for lighting people in disadvantaged, frontier, and outermost areas. This literature study aims to explore the potency of ceara rubber peel as supercapacitor electrodes for portable lamps. The method used in this study was find the related information through secondary data from various research journals. The results of the literature study indicate that the components in the rubber cassava peel have the potential to be used as supercapacitor electrodes. This innovation becomes very profitable for developing waste of ceara rubber peel that has not been utilized. The utilization of rubber cassava peel waste is also a solution to solve the problem of limited electricity and lighting in the underdeveloped, frontier, and outermost areas area.
Keywords: ceara rubber, electricity, electrode, supercapacitor
##plugins.generic.usageStats.downloads##
Referensi
Ariyanto, T., Prasetyo, I., Rochmadi. (2012). Pengaruh struktur pori terhadap kapasitansi elektroda superkapasitor yang dibuat dari karbon nanopori, Reaktor, 14(1), 25- 32.
Badan Pusat Statistik (BPS). (2016). Produksi ubi kayu menurut provinsi (ton). (https://www.bps.go.id/linkTableDinamis/view/id/880). Diakses pada tanggal 05 Desember 2021.
Esterlita, O. M., Netti, H. (2015). Pengaruh penambahan aktivator ZnCl2, KOH dan H3PO4 dalam pembuatan karbon aktif dari pelepah aren (Arenga pinata). Jurnal Teknik Kimia, 4(1), 47-57.
Ikbar, M. Y., Kartika, K.P. (2020). Rancang bangun lampu portable otomatis menggunakan RTC berbasis arduino. Jurnal Ilmiah Teknik Informatika, 14(1), 61 – 72.
Ke, Q., Wang. J. (2016). Graphene-based materials for supercapacitor electrodes – A review, Materiomics 2, 37-54.
Lili, W., Yupeng, G., Bo, Z., Chunguang, R., Xiaoyu. M., Yuning. Q., Ying. L., Zichen, W. 2011 High surface area porous carbons prepared from hydrochars by phosphoric acid activation. Bioresource Technology. 102(2), 1947-1950.
Mingbo, W., Peipei, A., Minghui, T., Bo, J., Yanpeng, L., Jingtang, Z., Wenting, W., Zhongtao, L., Qinhui, Z., Xiaojun, H. 2014. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor. Chemical Engineering Journal, 245, 166–172.
Pang, L., Zou, B., Zou, Y., Han, X., Cao, L., Wang, W., Guo, Y. (2016). A new route for the fabrication of corn starch-based porous carbon as electrochemical supercapacitor electrode material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 26–33.
Permatasari, A. R., Khasanah, L. U., Widowati, E. (2014). Karakterisasi karbon aktif kulit singkong (Manihot utilissima) dengan variasi jenis aktivator. Jurnal Teknologi Hasil Pertanian, 7(2), 1–6.
Riyanto, A. (2014). Superkapasitor sebagai piranti penyimpan energi listrik masa depan. Jurnal Ilmiah Pendidikan Fisika, 3(2), 56-63.
Shukla, A. K., Sampath, S., Vijayamohanan, K. (2000). Electrochemical supercapacitors: energy storage beyond batteries. Current Science, 79(12),1656-1661.
Siska, J. T., Tantimin. (2021). Analisis hukum terhadap kelalaian dalam pemasangan arus listrik yang menyebabkan hilangnya nyawa orang lain di Indonesia. Jurnal Komunikasi Hukum, 7(2), 966–977.
Supriyanto, A., Surtono, A., Susanto, T. (2019). Analysis of cassava leather paste as an electrolyte of electrical energy source. Journal of Technomaterial Physics. 1(1), 15-22.
Zhu, Z., Hu, H., Li, W., Zhang, X. (2007). Resorcinol formaldehyde based porous carbon as an electrode material for supercapacitors. Carbon, 45(1), 160-165.